第10章 大数法则与小数定律 · 1
一项研究对美国3141个县的肾癌发病率进行了调查,调查显示该病的分布模式很值得注意。发病率最低的县差不多都位于中西部、南部和西部人口稀少的乡村,这些区域按照惯例由共和党管辖。对此,你有何看法?
刚刚过去的几秒钟里,你的大脑处于非常活跃的状态,这主要是因为系统2在运行。你谨慎地在记忆中搜寻着并作出假设。在这个过程中你也付出了一定的努力,你的瞳孔会扩张,心跳会适度加快。系统1也没有闲着,因为系统2的运行需要从联想记忆中获取事实和建议。你很可能会否认共和党的政策提供了肾癌防控方法这个想法,却会关注肾癌发病率低的县大多是乡村这个事实。这个例子是我从机智的统计学家霍华德·维纳(Howard Wainer)和哈里斯·泽维林(Harris Zwerling)那儿得到的,他们对这一案例的评论是:“人们很容易作出推断,认为肾癌发病率低主要是由于乡村的生活方式很健康—没有空气污染和水污染,食品没有添加剂,保证新鲜。”这一点完全说得通。
现在,考虑一下肾癌发病率最高的县的情况吧。假设这些易发病的县差不多都位于中西部、南部和西部人口稀少的乡村,这些区域按照惯例由共和党管辖。霍华德·维纳和哈里斯·泽维林半开玩笑地评论道:“人们可以很容易作出推断,导致肾癌高发病率的直接原因是乡村生活的贫困—医疗条件差、高脂肪饮食、酗酒、嗜烟等。”当然这种说法肯定有问题,因为乡村生活方式不可能既是肾癌发病率高的原因又是其发病率低的原因。
问题的关键并不在于这些县处在乡村地区或是由共和党掌管,而在于乡村地区人口少。我们通过这个例子学到的不是流行病学知识,而是我们的大脑和统计数据之间的复杂关系。系统1非常擅长一种思维模式—自动且毫不费力地识别事物之间的因果联系,即使有时这种关系根本就不存在,它也会这样认定。当听到肾癌高发地区的情况时,你立刻会想当然地认为这些县与其他县不同是有原因的,一定有个理由可以解释这种不同。然而,正如我们所见,当系统1面对“纯统计学”的数据时是束手无策的,因为这些数据虽然可以改变结果出现的概率,却不能直接导致结果的发生。
根据定义,一个随机事件是不需要解释的,但一连串的随机事件就有规律可循。想象有一个装有大理石弹球的瓮,其中有一半的弹球是红色的,另一半弹球是白色的。然后,再想象有一个非常有耐心的人(或一个机器人)随意从瓮中取出4个大理石球,记录其中的红球数,再把球放回去,重复这样的做法数次。总结记录结果时,你会发现“2红2白”的结果出现的次数(几乎刚好)是“4个全红”或“4个全白”这种结果的6倍。这一倍数关系是个数学事实。你可以对这种从瓮中反复抽样的结果作出自信的预测,就像你能预测到用锤子砸鸡蛋的结果一样。尽管你无法预见蛋壳破碎的具体细节,但大概结果还是很确定的。两件事的不同之处在于:你想到锤子砸鸡蛋时感受到的那种明确的因果联系,在瓮中取样的设想中是找不到的。
相关的统计学事实与癌症那个例子也有联系。两个耐心的计数者轮流从瓮中取大理石球,杰克每次拿出4个球,吉尔拿出7个。他们都记录了每次拿到相同颜色弹球的次数—要么全白,要么全红。如果他们取球的做法持续的时间足够长,杰克拿到同颜色大理石的次数会是吉尔的8倍(两人的预期概率分别为12.5%和1.56%)。这个结果与锤子无关,也与因果联系无关,这仅仅是一个数学上的事实:一次拿4个弹球与一次拿7个相比,出现极端结果的概率更大。
现在,将美国人口想象成一个巨大的瓮中的弹球。有些球上标有KC(即Kidney Cancer的简称)字样,表示肾癌。你抽取弹球样本,并依次按照所在县摆放,你会发现乡村地区的样本要比其他地区的少。如同杰克和吉尔所做的那个游戏一样,极端的结果(非常高或非常低的癌症发病率)容易出现在人口稀少的县,这个故事告诉我们的就是这些。
我们从一个令人费解的事实说起:肾癌的发病率在各县有所不同,且是有规律的,我用统计学理论对此作了解释:相比于大样本,极端的结果(高发病率和低发病率)更容易出现在小样本中。这样的解释不存在因果联系。某县的人口稀少既不会引发癌症,也不能避免癌症,只会使癌症的发病率比人口稠密地方的发病率更高(或更低)。这就是真相,没什么可解释的。在某个人口稀少的县,癌症发病率并非真的比正常情况更低或更高,只是这个县正好在某个特殊的年份赶上了抽样调查罢了。如果我们在第二年重复这样的分析,也能预测到在小样本中出现极端结果的一般模式,但在前一年癌症发病率高的县,这一年发病率并不一定高。如果是这样的话,则人口稠密或稀少的因素就无法对发病率作出解释了:这些表面因素就是科学家眼中所谓的假象,即观察结果完全依赖于调查方法的某一方面,在这个案例中,则依赖于样本大小。
我刚才说的例子也许会令你惊讶,但这并不是真相初次大白于天下。你早就知道应该更相信大样本,并且即使是对统计学一无所知的人也听说过大数法则。但是“知道”并非是非抉择问题,你可能会发现下列陈述放在自己身上很合适:
·当你阅读这个关于流行病学的例子时,并没有立刻注意到“人口稀少”这一特点与此次调查有何关联。
·对于采用4个样本还是7个样本所产生的不同结果,你至少会感到有一点惊讶。
·即使是现在,想要确定下面两个陈述句所说的完全是一回事,你也要费些脑力:
(1)大样本比小样本更精确。
(2)小样本比大样本产生极端结果的概率大。
🍱 落+霞+读+书+=- l u o x i a d u s h u . c o m -=
第一个表述清晰地陈述了一个事实,但直到感受到第二个表述传达给你的意思,
你才意识到自己并没有真正理解第一个表述的意思。
上述内容概括起来就是:没错,你知道大样本的结果更精确,但你现在可能才意识到你并不清楚为什么它们更精确。不仅你一人如此,阿莫斯与我在一起进行的第一个研究表明,即使是经验丰富的研究人员对样本效应也缺乏直觉,要么就是理解不到位。
小样本的出错风险可能高达50%
没有接受过统计学方面训练的人是出色的“直觉性统计学家”。我与阿莫斯在20世纪70年代早期的合作便始于对这个观点的讨论。他对我(在大学)的研究班及我本人讲过,密歇根大学的一些研究人员对直觉性统计抱有乐观态度。我个人对那个观点有种强烈的感觉:那段时间我发现自己并不是一个出色的直觉性统计学家,但是我也不相信别人会比我好多少。
对于一个研究型心理学家来说,样本变差没有什么特别的。它是个烦人且损失又大的麻烦事,会把每项实验都变成一场赌博。试想你希望证明6岁女孩的平均词汇量比同龄男孩的词汇量更丰富的假设。这个假设从整体来说是成立的,女孩的平均词汇量确实要比男孩的丰富一些。然而,尽管男孩与女孩差别很大,但你很可能会抽取到男女相差不太明显的样本,甚至会抽到一个男孩比女孩词汇测试成绩还要好的样本。如果你是那个研究者,这个结果对于你来说代价就太高了,因为它浪费了你的时间和精力,却无法证实一个实际正确的假设。使用一个足够大的样本是降低这种风险的唯一方法。选择小样本的研究者只能看自己是不是能选对合适的样本了。
想要对样本错误的风险作出评估,只需通过一个相当简单的步骤就可以实现。然而按照惯例来看,心理学家并不是通过计算来选定样本大小的。他们听从自己的判断,但这些判断往往是错的。在与阿莫斯发生意见分歧不久之前,我读过一篇文章,文章通过生动的观察结果展示了研究人员所犯的错误(他们现在仍在犯这种错误)。该文作者指出心理学家选择的样本通常都很小,致使他们有50%的风险不能够证实其正确的假设,而任何研究人员都不会在头脑清醒的情况下接受这种风险。对此有一个貌似正确的解释,即心理学家对于样本大小的决定反映了他们普遍存在的一个直觉性错误观念,即对于样本变差范围的错误看法。
这篇文章令我十分震惊,因为我在自己的研究中碰到了一些问题,却在这篇文章中找到了相关解释。与大多数研究型心理学家一样,我也墨守成规地选择了一些过小的样本,因此得到的实验结果毫无意义。现在,我知道了原因:那些奇怪的结果实际上就是我这种研究方法的典型产物。我的错误特别令人尴尬,因为我教过统计学,也知道该怎样计算样本的大小,以便将风险降至可以接受的程度。但是,我从未通过计算来确定样本大小。和我的同事一样,我被传统所禁锢,相信自己设计实验的直觉,也从未认真考虑过样本选择会带来的那些风险。阿莫斯来参加研讨会时,我已经意识到自己的直觉是错误的。在研讨会中,我们很快达成共识—密歇根的那些乐观派是错误的。