第17章 所有表现都会回归平均值 · 1
我曾经为以色列空军的飞行教练们讲授过关于高效训练的心理学课程,那次经历为我带来了职业生涯中最引以为豪的发现。当时我告诉他们关于技能训练的一条重要原则:对良好表现的嘉奖比对错误的惩罚更有效。不管是对鸽子、老鼠、人类,还是其他什么动物的研究,都给这个说法提供了证据。
就在我结束了激情洋溢的演说之后,经验最为丰富的一位教练举手示意,发表了一番自己的意见。他先是承认奖励对鸟确实管用,但他认为这不是训练飞行学员的最佳选择。他说道:“在很多情况下,我会赞许那些完美的特技飞行动作。不过,下一次这些飞行员尝试同样飞行动作的时候,通常都会表现得差一些。相反,对那些没执行好动作的学员我会大声怒吼,但他们基本上都会在下一次表现得更好。所以说,别告诉我们嘉奖有用而惩罚没用,因为事实恰恰相反。”
这条统计学原则我已经讲授了很多年,而这一次我从一个新的角度重新认识了它,这的确是一个顿悟的时刻。那个飞行教练是正确的,但同时他也彻彻底底地错了。他的观察是精明且到位的:被他表扬之后,很多学员很有可能会表现得很糟糕;惩罚反而会促使他们进步。但是就他的推断而言,奖励和惩罚之间是毫无关系的。他所观察到的就是众所周知的“回归平均值”现象,这种现象与表现质量的随机波动相关。一般来说,只有学员的表现远远超出平均值时才能得到这位教练的表扬。但也许学员只是恰巧在那一次表现得很好,而后又变差,这与是否受到表扬毫无关系。同样,或许学员某一次非同寻常的糟糕表现招来了教练的怒吼,因此接下来的进步也和教练没什么关系。这个教练把不可避免的随机波动与因果解释联系起来了。
这个提议确实引起了反响,不过这些教练对概率预测的代数方法没什么兴趣。所以,我用粉笔在地上画了一个靶子。我请房间里的每一位教练都转过身去,背对着靶子向里面接连扔两枚硬币。接着我们分别测量了靶子到两枚硬币的距离,并写在黑板上。然后,我们又将这些数据按第一次投掷的距离远近排列。很明显,第一次投掷得比较好的人第二次大都做得不好,而第一次没有投掷好的人第二次大都有了进步。我告诉这些教练,他们在黑板上看到的数据其实和飞行员的表现是一致的:糟糕的表现常常会有提高,而好的表现则会变得糟糕,这跟表扬与惩罚都没有关系。
那天,我的发现是,那些飞行教练陷入了一个偶然性困局之中:因为当飞行学员表现差时,他们就会受到惩罚,而接下来的进步则很可能为他们带来嘉奖,事实上惩罚根本就没有发挥什么作用。而且,处于这种窘境之中的不仅仅是那些教练。我曾无意中发现了人类环境中一个意义重大的事实:生活给予我们的反馈常常违背常理。因为当别人取悦我们时,我们也会对他好;当别人对我们不好时,我们也会对他产生厌恶之情。然而从统计学角度来看,我们却是因为对人友好而受到惩罚,因为举止无礼而得到嘉奖。