附录A 不确定性下的判断:启发法和偏见 · 1
(本文首次刊登于1974年的《科学》杂志上,第185卷。美国国防部高级研究计划局为此项研究提供了支持,海军研究办公室也与位于尤金的俄勒冈研究院签订了合约,监督该研究。另外,该研究还得到了位于以色列耶路撒冷的希伯来大学研究与开发部门的支持。)
我们所做的许多决策都是基于对不确定事件概率的信念,这些不确定事件包括选举结果、被告的内疚感或是美元的未来价值。这些信念通常被表述为“我想……”“概率是……”“它是不可能的……”等。对于不肯定事件的信念有时还能以概率或主观概率等数字形式表现出来。那么,是什么决定了人们的信念?
人们又是怎样评估不确定事件的概率和不确定数量的价值呢?本文将会告知你们,人们依赖于数量有限的启发式原则,而这些原则能将测量概率以及预测价值的任务简化,使其成为更为简单的判断过程。总的来说,这些启发法相当有用,但有时也会导致严重的、系统性的错误。
对概率的主观评估与对距离或大小等物理量的主观测量相类似。这些判断都依赖于效度有限的数据,是根据启发式的规则进行的。例如,某物体的距离取决于其清晰程度。物体看上去越清楚,其距离就显得越近。这条规则有一定的效度,因为在任何给定的情境中,距离较远的物体都会比距离较近的物体更不清楚。然而,对这条规则的信赖会导致我们在测量距离的过程中产生系统性错误。特别是在能见度较低时,物体轮廓就会模糊,而其距离就常常会被高估。另一方面,在能见度较高时,物体轮廓就会清晰,其距离也就会被低估。因此,如果依赖于清晰度,将清晰度作为测量距离远近的标尺的话,就会导致普遍的偏见。这样的偏见在对概率直觉性的判断中也会出现。本文将描述三种应用于判断概率和预测价值的启发式,列出由这些启发式引起的偏见,并讨论这些偏见的实际应用和理论内涵。
代表性
人们考虑的许多概率问题都包含在以下某个类型当中:物体A属于类别B的概率是多少?事件A起源于过程B的概率是多少?过程B引起事件A的概率是多少?人们在回答这些问题时,会典型地依赖于代表性启发法,即通过用A来代表B,也就是通过比较B与A的相似程度来对概率进行评估。例如,如果A能高度代表B,人们就会认为A源自B的概率高。但如果A与B并不相似,人们就会认为A源自B的概率低。
🍟 落|霞|读|书- l u o x i a d u s h u . c o m -
若想通过代表性对判断进行阐述,请考虑下面这个情况,若有某个人被他原来的邻居描述为:“史蒂夫非常腼腆,少言寡语,很乐于助人,却对他人或这个现实世界没多大兴趣。他谦恭有礼,做事井井有条,中规中矩,关注细节。”人们如何从一个可能的职业列表中(例如农民、售货员、飞行员、图书管理员或是医生)评估他从事某个特定职业的概率?又如何根据可能性的大小来将这些职业进行排序呢?在代表性启发法中,例如,史蒂夫是个图书管理员的概率是通过其与典型的图书管理员形象的代表性或相似性来进行评估的。事实上,对于这类问题的研究已经表明,人们对职业概率的排序与对职业相似性的排序方法完全是相同的。而这种关于概率的判断方法会导致严重的错误,因为相似性或代表性不会受到某些因素的影响,而这些因素却能影响对概率的判断。
对结果的先验概率(prior probability)不敏感。对代表性没有任何影响而对概率有重要影响的其中一个因素是结果的先验概率,或基础比率。例如,在史蒂夫的那个例子中,在我们作出史蒂夫是个图书管理员而不是农民的理性评估时,是应该将农民比图书管理员人数更多的事实考虑在内的。然而,对基础比率的考虑并不会影响史蒂夫与图书管理员以及农民的典型形象的相似性。因此,如果人们通过代表性来评估概率,先验概率就会被忽视掉。我们在运用了先验概率的实验中检验了这个假设。在实验中,我们向受试者简要概述了几个人的性格,这几个人是从100位工程师及律师的样本中随意抽取出来的。而受试者需要通过对每个人的描述来评估其是工程师还是律师。在某个实验情境中,受试者被告知这些被描述的100人中,有70位工程师、30位律师。而在另一个实验情境中,受试者被告知这100人中,有30位工程师、70位律师。在第一种情境下,受试者判断任意一个描述是关于工程师的而不是关于律师的概率都应该高于第二种实验情境。因为第一种情境中工程师更多,第二种情境中律师更多。值得注意的是,我们通过贝叶斯定理还能知道每个描述的概率比率应该是(0.7/0.3)2,或是5.44。然而,这些受试者在这两个实验情境中都得出了同样的概率判断,这严重违反了贝叶斯定理。很明显,受试者认为某个特定的描述是在说工程师而非律师是通过描述对于这两个典型职业的代表程度而来的,而很少或根本就不考虑其所属类别的先验概率。
当这些受试者没有其他信息来源时,他们会正确地利用先验概率。在没有人物描述的情况下,受试者判断某个人是工程师或律师的概率分别是0.7和0.3,这与基础比率正好符合。然而,当某个描述存在,就算这个描述没有任何信息,先验概率还是会被彻底忽略掉。对于以下描述的回应就阐明了这个现象:
迪克是位30岁的男性,已婚,但无子女。他能力强,干劲足,承诺一定要在自己的领域功成名就。他很受同事的欢迎。
这个描述所传达的信息与迪克是工程师还是律师的问题完全没有关系。因此,迪克是工程师的概率应该与工程师占样本总人数的比率相同,就如同我们没有得到任何有关迪克的描述时一样。然而,受试者却将迪克是工程师的概率判断为0.5,并不关注工程师占总人数的比率是0.7还是0.3。很明显,在没有任何证据和得到了一些无用的证据之后,人们的回应是不同的。在没有任何特定证据的情况下,先验概率能够被合理地应用;而在得知一些无用证据的情况下,先验概率就会被忽略。
对样本大小的不敏感。在某个指定大小的样本中,评估获得某个特定结果的概率时,人们总会应用代表性启发法。即他们会通过某个样本结果与相关参数的相似性来评估这个结果的概率。例如,人们会认为随机抽取的10位男性的平均身高是6英尺,而这个结果就是由与相应参数(这个参数即是男性人口的平均身高)的相似性得来的。某个样本的统计数据与人口参数的相似性并不是由样本的大小来决定的。其结果就是,如果我们通过代表性来评估概率,判断出的某个样本的统计数据实质上就是独立于样本大小的。的确,当受试者评估大小不同样本的平均身高分布时,他们得出的分布是相同的。例如,人们在评估平均高度高于6英尺的概率时,无论样本大小是1 000、100还是10位时,其得出的分布都是相同的。另外,即使样本大小的重要性在问题形成之时就被强调过,受试者还是不能体会其所起的作用。请考虑下面的问题:
某个城镇有两家医院。在较大的那家医院里,每天大约有45个婴儿降生,而在较小的医院里,每天有15个婴儿降生。如你所知,其中50%的婴儿应该是男婴。然而,男婴实际的百分比每天都会有所变化,有时会高于50%,有时会低于50%。
在一年的时间里,每家医院都记录了新生婴儿中男婴比率大于60%的天数。你认为,哪一家医院记录的天数更多?
更大的医院(21)
更小的医院(21)
大致相同(其天数的不同在5%的范围内,53)
括号中的数值表示的是选择该答案的大学生人数。
无论是大医院还是小医院,多数受试者判断出的60%以上新生儿是男婴的概率都是相同的。这可能是因为这些事件都来自于同样的统计资料提供的描述,因此关于总体情况的代表性相同。相反,以样本理论进行分析的话,在小医院里,超过60%的婴儿是男婴的天数肯定应该比大医院的多,因为大样本的男女比率不太可能偏离50%。很明显,这个统计学的基本概念与人类的直觉不相符。
在对后验概率(即从一个整体而不是另一个整体中抽取样本的概率)的判断中,人们对样本大小的问题也不是很敏感。
请考虑下面这个例子:
想象有个装满球的罐子,其中有2/3的球是一种颜色,1/3的球是另一种颜色。某个人从罐子里取出了5个球,发现有4个是红色的,1个是白色的。另一个人取出了20个球,其中有12个是红色的,8个是白色的。这两个人中,谁更会认为罐子里2/3的球是红色的,1/3的球是白色的?每个人给出的概率各是多少?
在这个问题中,假设两次抽取的先验概率相同,那对于4∶1的那个样本来说,其正确的后验概率应为8 ∶1;而对于12∶8的样本来说,其后验概率为16∶1。然而,大多数人却认为第一个样本为罐子里主要是红球的这个假设提供了更为有力的证据,因为第一个样本的红球比例要比第二个样本的高。这再次证明了,直觉性判断由样本比例主导,本质上并不受样本大小的影响。然而,样本大小却对实际的后验概率起着至关重要的作用。此外,对后验概率的直觉性评估比起正确的值来说并没有那么极端。在这类对概率的评估中,低估证据的影响反复出现。这种情况被称为“保守主义”。
误解机会。人们期望由随机过程产生的事件序列能够代表这个过程的基本特征,即使这个序列很短。例如,人们在考虑抛硬币看正反面的问题时,总会觉得其顺序更可能是正—反—正—反—反—正,而不是正—正—正—反—反—反,因为后者并不能体现出抛硬币的公正性。因此,人们期望过程的基本特征不仅表现在整个序列中,还表现在局部的序列中。然而,局部代表的序列系统地脱离了概率的期望:因为局部代表的序列中选择很多,但可供选择的项却很少。抱有局部代表性这个想法的另一个后果就是有名的赌徒谬误。例如,在看到轮盘赌的指针长时间连续指向红色以后,大多数人就会错误地认为现在该是指向黑色的时候了。这是因为,相比再次出现红色,出现黑色会使序列更具代表性。人们普遍将概率视为可进行自我纠正的过程。在这个过程中,某个方向的偏离能引起其相反方向的偏离,以达到恢复平衡的目的。事实上,在概率的结果揭晓之时,偏离并不是被“纠正”了,而只是融为一体了。